

Программный комплекс FlowVision как междисциплинарная платформа вычислительной механики

"Что нельзя рассчитать, невозможно построить" Исповедь ракетчика

к.ф.-м.н. Андрей Александрович Аксенов Технический директор ООО ТЕСИС

- CAE Computer Aided Design, система автоматизации инженерных расчетов.
- В машиностроении наиболее распространены САЕ системы, предназначенные для:
- решения задач механики сплошной среды (MCC),
- кинематика и динамика многих тел,
- оптимизации различных процессов.

Метод сеток:

- Генерация сетки: Расчетная область разбивается на огромное количество ячеек или точек (от 10³ до 10⁹)
- Аппроксимация: В каждой ячейке (точке) уравнение жидкости линеаризируется и аппроксимируется численной схемой. Получаем от 10³ до 10⁹ алгебраических уравнений
- Решатель: Решаем разными методами от явных до прямых и итерационных неявных методов

3

Виды расчетных сеток

криволинейные сетки,

строятся вручную

Тетраэдрические сетки и гексадоминантные - автомат

«бессеточные методы» - набор точек которые неподвижны (LBM) или движутся (SPH, DEM)

В начале прямоугольная сетка, cut-

5

Методы аппроксимаций уравнений

1. Конечно-разностные схемы – подтип «Конечно-объемные»

Вводятся конечные разности для уравнений. Если уравнение записано в дивергентном то аппроксимации потоков на сторонах ячеек

2. Спектральные – подтип «Конечные элементы»

Вводятся в ячейках-элементах базовые функции, по которым раскладываются искомые функции. Для амплитуд базовых функций ищется решение.

Но в итоге получаем матрицу задачи, которая «не помнит» метод аппроксимации.

 $A_{ij} * f_i = Q_i$

Матричное урвнение решаем либо явными, либо неявными методами

Перспективные технологии

1. SPH – smooth particle hydrodynamics

Проблема – какую функцию взаимодействия частиц выбрать?

2. LBM – Lattice Boltzmann Method

Проблема — низкий порядок аппроксимации, плохая аппроксимация стенок, разрешения погранслоев, мгновенная передача взаимодействия в несжимаемой жидкости невозможна

3. DEM - Discrete element method

Проблема – значительные численные затраты на обработку контактов частиц.

Классика КО, КЭ

Модерн SPH, LBM, DEV...

Будущее САЕ

1. Многодисциплинарность

Решения типа FSI разных кодов – уже прошлое. Вся физика – в одном флаконе!

2. Простота использования

САЕ используют инженеры-расчетчики, но этот процесс плавно переходит к конструкторам

3. Шаблоны расчетных проектов САЕ и автоматизация расчетов

Два узких места — расчетная сетка и расчетчик. Необходимо создавать методики расчетов, сохранять их как шаблоны расчетных проектов и на базе них автоматизировать процесс решения задач.

4. Интеграция САЕ в PLM

Весь мир идет к единым информационным системам.

5. Создание САПР (не САD!!!)

Решение обратных задач (САПР) на базе параметрической и топологической оптимизаций

6. Использование АІ

АІ не будет «рисовать» результаты, потому что АІ – интерполятор, а САЕ – экстраполятор, предсказатель.

Но АІ будет использоваться для

- 1) Генерация расчетных проектов
- 2) Помощь в визуализации расчетных данных
- 3) Помощь в нахождении оптимальных конструкторских решений
- 4) Лечение и упрощение геометрии для быстрого создания расчетных проектов
- АІ должна убрать рутинные функции расчетчика

FlowVision

Мы делаем междисциплинарную САЕ систему будущего

9

FlowVision – история

- Первые работы (для НПО Энергии, руководитель космонавт А.А. Серебров) исследование гидродинамики установок для производства белка в условиях невесомости, МФТИ.¹⁾
- Начало разработки FlowVision 1.0 ИАП РАН, 1991г.
- 1999 года коммерциализация разработки в компании ТЕСИС. 2)
- 2010 Создана совместная лаборатория ОИВТ РАН -МФТИ-ТЕСИС
- Ядро команды научная школа академика О.М.Белоцерковского и академика Э.Е.Сона
- Разработчики выпускники МФТИ (ФАКИ, ФУПМ, ФОПФ), МГУ (ВМК, Мехмат), МАИ, МГТУ им. Баумана, МИФИ, НГУ

¹⁾ Aksenov A.A., Gudzovsky A.V., Serebrov A.A. Electrohydrodynamic instability of fluid jet in microgravity// Proc. of 5th Int. Symp. on Computational Fluid Dynamics (ISCFD), Aug. 31 - Sept. 3 1993, Sendai, Japan. Japan Society of Computational Fluid Dynamics, Vol. 1, P. 19-24.

²⁾ A. Aksenov, A. Dyadkin, V. Pokhilko. Overcoming of barrier between CAD and CFD by modified finite volume method. <u>Proc. 1998 ASME Pressure Vessels and Piping Division Conference, San Diego, ASME PVP-Vol. 377-1</u>

ЭГД неустойчивость струйки биопрепарата

Импортозамещение и импортоопережение

- FlowVision 100% российский код, успешно конкурирующий с такими грандами систем автоматизированного инжиниринга, как Fluent и CFX(ANSYS), StarCCM+ (Siemens).
- Поддержка российских OC AltLinux, RedOS, AstraLinux
- Поддержка процессора Эльбрус
- Используется 20 лет на предприятиях Роскосмоса, Росатома, КТРВ, Ростеха, а также в компаниях Европы, США, Китая и Тайваня, Южной Кореи

Решаемые задачи - промышленность, медицина, спорт

- CFD расчет уравнений движений жидкости и газа с учетом
 - Уравнения Навье-Стокса, Дарси, скоро Эйлера.
 - Химреакции/Горение
 - Турбулентности
 - Перенос дисперсных частиц, спектр частиц по диаметру
 - Пористые среды
 - Свободной поверхности
- Лучистый теплообмен (P1, MDO, спектр излучения)
- Электрические и магнитные поля
- Динамика твердых тел
- Акустическая модель
- Динамика деформируемых тел
 - FSI: Взаимодействие течения и конструкции с помощью SIMULIA Abaqus, MSC Nastran, Win.Machine, Fidesys

- Внедрение и консалтинг
 - Выполнение проектов на заказ
 - Разработка методик моделирования для решения типовых задач клиента

• Обучение

- Полезные статьи и how to
- Базовое и индивидуальное обучение

• Техподдержка

- Помощь в решении проблем, исправление ошибок, помощь с документацией
- Обновление программы. Версии 1-2 раза в год

Клиент-серверная архитектура

- Пользователь работает на своем родном ноутбуке
- Считает где-то на удаленной мощной машине

Управление расчетным проектом

Передача графических метаданных

- Визуализирует там же
- Причем смотреть результаты можно с коллегами, начальниками и заказчиками на разных компьютерах

Импорт геометрии из CAD

FlowVision

Адаптация сетки и разрешение пограничного слоя

- Полное решение всех уравнений основной сетки
- Наложенная сетка (пока, работаем над встраиваемой)
- Y+ =< 1

Все-Маховый решатель уравнений Навье-Стокса

- В расчетной области может быть несжимаемой и сверх- гиперзвуковой течение одновременно.
- Неявный метод решения CFL>1

Течение в паровоздушном эжекторе

Гиперзвуковое обтекание цилиндра при М=15 Шаг по времени: конвективный CFL =10. Сетка: 200x50

- Имеется два подхода для расчета H-C:
 - В переменных скорость давление
 - В переменных скорость плотность
- В переменных скорость плотность невозможно считать несжимаемые течения => используем только плотность-давление
- Расщепление по физическим переменным (p-v) для несжимаемых течений ->
 - Быстрый (один раз считает НС и один раз уравнение для Р)
 - В явном варианте точный (для несжимаемых течений)

- Чорин (1969) проекционный метод МАК, Белоцерковский, Гущин, Щенников (1975) – схема расщепления по физическим переменным, SIMPLE, PISO...
- Идея методов введение уравнения для коррекции скорости, где $\,\widetilde{\mathbf{V}}$ дополнительная переменная

(1)
$$\frac{\mathbf{V}^{n+1} - \widetilde{\mathbf{V}}}{\tau} = -\frac{\nabla p^{n+1}}{\rho} + \frac{\nabla p^{n}}{\rho}$$

Уравнение Н-С записывается через старый градиент давления и скорость $~~{f V}$

(2)
$$\frac{\widetilde{\mathbf{V}} - \mathbf{V}^n}{\tau} + CD(\mathbf{W}_f^n, \mathbf{V}^n) = -\frac{\nabla p^n}{\rho}$$

Если сложить (1) и (2) получим уравнение Н-С, которые хотели рассчитать

$$\frac{\mathbf{V}^{n+1}-\mathbf{V}^n}{\tau}+CD(\mathbf{W}^n_f,\mathbf{V}^n)=-\frac{\nabla p}{\rho}^{n+1}$$

• Этап 1. Получение тильдованной скорости

$$\frac{\tilde{V} - \mathbf{V}^n}{\tau} + CD(\mathbf{W}_f^n, \mathbf{V}^n) = -\frac{\nabla p^n}{\rho}$$

 Этап 2. Используя условие несжимаемости ∇Vⁿ⁺¹ = 0, получим уравнение для давления из коррекции скорости

$$\frac{\nabla \widetilde{\mathbf{V}}}{\tau} = -\frac{\Delta p^{n+1}}{\rho} + \frac{\Delta p^{n}}{\rho}$$

• Этап 3. Получим окончательную дивергентную скорость в центре ячейки и на ее гранях

Скорость в центре ячейки
$$\frac{\mathbf{V}_{c}^{n+1} - \widetilde{\mathbf{V}}_{c}}{\tau} = -\frac{\nabla p^{n+1}}{\rho}\Big|_{c} + \frac{\nabla p^{n}}{\rho}\Big|_{c}$$
Скорость на грани ячейки
$$\frac{W_{f}^{n+1} - \widetilde{\mathbf{V}}_{f}}{\tau} = -\frac{\nabla p^{n+1}}{\rho}\Big|_{f} + \frac{\nabla p^{n}}{\rho}\Big|_{f}$$

«передний привод» для сжимаемого реального газа

Адиабатическая $\frac{d\rho}{dp} = \frac{\partial\rho}{\partial p}\Big|_{T} + \frac{1}{\rho^{n}C_{n}}\frac{\partial\rho}{\partial T}\Big|_{P}$ сжимаемость $\frac{d\rho}{dn}\frac{p_c^{n+1}-p_c^n}{\tau}+\nabla(p_c^{n+1}\frac{d\rho}{dn}\mathbf{V}_c^n)=\tau(\Delta p^{n+1}-\Delta p^n)-\nabla(\rho_c^n\mathbf{V}_c^n)-\nabla(p_c^n\frac{d\rho}{dn}\mathbf{V}_c^n)$ давление $\mathbf{W}_{f}^{n+1} = -(\rho_{c}^{n} \mathbf{V}_{c}^{n}) - (p_{c}^{n+1} \frac{d\rho}{dp} \mathbf{V}_{c}^{n}) - \tau(\nabla_{f} p^{n+1} - \nabla_{f} p^{n})$ переносные скорости $\rho^{n+1} = \rho^n + \frac{d\rho}{dp}(p^{n+1} - p^n)$ плотность $\frac{\rho^{n+1}H^{n+1} - \rho^n H^n}{\tau} + CD(W_f^{n+1}, H^{n+1}) = \frac{p^{n+1} - p^n}{\tau}$ Энергия H-C $\rho_c^{n+1} \mathbf{V}_c^{n+1} - \rho_c^{n} \mathbf{V}_c^{n} + \tau \mathbf{CD}(\mathbf{W}_f^{n+1}, \mathbf{V}_c^{n+1}) = -\tau 2\nabla p^{n+1} + \tau \nabla p^n$ Определяем окончательную плотность и температуру $T^{n+1} = T(H^{n+1}, p^{n+1})$

 $\rho^{n+1} = \rho(p^{n+1}, T^{n+1})$

- Поверхность импортируется в виде сеточных форматов (STL, WRL)
- Ячейка произвольный многогранник
- Булево вычитание объема из начальной сетки

¹⁾ A. Aksenov, A. Dyadkin, V. Pokhilko. Overcoming of barrier between CAD and CFD by modified finite volume method. Proc. 1998 ASME Pressure Vessels and Piping Division Conference, San Diego, ASME PVP-Vol. 377-1

Аппроксимация диффузионных потоков на границах ячейки

Чтобы аппроксимировать уравнения, вводится реконструкция расчетных переменных внутри расчетных ячеек.

Переменные реконструируются в зависимости от типа уравнений и решения.

Интегрирование уравнений для реконструированных переменных по расчетным ячейкам дает конечно-объемную аппроксимацию этих уравнений

Аппроксимация конвективных потоков на границах ячейки

25

Потоки в соседние ячейки для скошенной схемы

Изменение максимальной завихренности от номера шага по времени

$$rac{\partial \omega}{\partial t} + (v \cdot
abla) \omega \ - (\omega \cdot
abla) v + \omega (
abla \cdot v) = rac{1}{
ho^2} \left[
abla
ho imes
abla p
ight]$$

Бенчмарк: перемешивание потоков в Т-образной трубе (Th. Frank , C. Lifante , M. Adlakha , H.-M. Prasser, F. Menter)

Моделируется задача смешивания разнотемпературных потоков воды в тройнике. В основе задачи лежит эксперимент, в литературе отмеченный как «Vattenfall T-Junction Test Facility».

Расчетная сетка

Mesh3 - равномерная сетка, диагональная по отношению к течению, с размером ячейки h = 4 мм (дополнительно для этой сетки включена скошенная схема для вычисления конвективных потоков на гранях ячеек);

Динамическая расчетная сетка (mesh2)

Распределение осредненной по времени температуры (плоскость симметрии)

Профиль осевой скорости (z = 2,6D)

Моделирование подвижных тел

- Эйлеров подход сетка неподвижна
- Ячейки появляются, исчезают, меняют объем
- Ячейки заметаются телом, данные из под них передаются по направлению движения тела
- Передача данных из под тела происходит правильно даже в том случае, если тело тоньше ячейки!

Одна из задач с подвижным телом, ударными волнами

- Был предложен сотруднками Лос-Аламасовской лаборатории (Hirt C.W., Nicholls B.D., Volume of fluid (VOF) method for the dynamics of free boundaries// J. Comput. Phys. 1981, 39, 201.)
- f объемная доля фазы (Volume of Fluid VoF) в ячейке.
- Решение уравнения переноса для VoF:

$$\frac{\partial f}{\partial t} + V \nabla f = \mathbf{0}$$

- Помечаем «газовые» (f=0) и «жидкостные» ячейки (f=1).
- В ячейках где 0<f<1 проходит граница раздела в оригинальном методе VOF значения экстраполируются и используются как ГУ для «жидкостных» ячеек.

Разрешение тонких структур

 Невозможно разрешить методом VOF капли, пузырьки газа, пленки, которые имеют размер меньше расчетной ячейки.

Хотя формально метод VOF считается

Консервативность

консервативным, на самом деле он таковым не является. В результате расчета функция f из-за погрешностей расчетной схемы (схемная диффузия, дисперсия), f принимает нефизичные значения больше 1 или меньше 0, которые ограничиваются фильтром. При этом нарушается консервативность.

Размазывание фронта

 Схемная диффузия приводит к «расплыванию» резкого фронта между двумя жидкостями на несколько расчетных ячеек. Применение схем с отрицательной схемной диффузией, или коррекция VOF приводят к нефизичным решениям.

- При VoF < 0.01 ячейка газовая (GAS)
- При VoF > 0.99 ячейка жидкостная (FLUID)
- При 0.01< VoF< 0.99 ячейка поверхностная (SURF)

0	0	0	0	0	0
1	0	0	0.7	0.5	0
1	0.5	0	0	0	0
1	0.7	0.1	0	0	0.01
1	1	1	0.1	0	0.03
1	0.5	1	0.5	0.3	0.3
1	1	1	1	0.7	0.5

Белые ячейки – FLUID, зеленые – GAS, синие - SURF

0	0	0	0	0	0
1	0	0	07	05	0
1	0.5	0	0	0	0
1	0.7	0.1	0	0	0.01
1	1	1	0.1	0	0.03
1	0.5	1	0.5	0.3	0.3
1	1	1	1	0.7	0.5

Красные ячейки – BUBBLE, Желтые – DROPLET

Реконструкция границы раздела и генерация сетки

- Определяются весовые коэффициенты площади сторон ячейки с учетом значений VOF у нее и у ее «соседей»
- Определяется нормаль свободной поверхности из теоремы Гаусса (проекция векторплощади на любую плоскость равна нулю)
- Определяется центр свободной поверхности.

Естественные ГУ на границе

- непрерывность поля давления
- кинематическое ГУ)
- равенство сил трения

Дополнительное ГУ На границе из-за схемы расщепления

$$P_1|_{\Gamma_+} = P_2|_{\Gamma_-}$$
$$U_1|_{\Gamma_+} = U_2|_{\Gamma_-}$$
$$F_1|_{\Gamma_+} = -F_2|_{\Gamma_-}$$

$$\frac{1}{\rho_1} \frac{dP_1}{dn}\Big|_{\Gamma_1} = \frac{1}{\rho_2} \frac{dP_2}{dn}\Big|_{\Gamma_2}$$

$$\frac{U_1 - \tilde{U}_1}{\tau} - \frac{1}{\rho_1} \frac{dP_1^{n+1}}{dn} \bigg|_{\Gamma_+} + \frac{1}{\rho_1} \frac{dP_1^n}{dn} \bigg|_{\Gamma_+} = \frac{U_2 - \tilde{U}_2}{\tau} - \frac{1}{\rho_2} \frac{dP_2^{n+1}}{dn} \bigg|_{\Gamma_-} + \frac{1}{\rho_2} \frac{dP_2^n}{dn} \bigg|_{\Gamma_-}$$

- Учитываются не только потоки к «соседям» по сторонам ячейки, но также и к «соседям» по ребрам.
- Поток VOF определяется из реконструкции поверхности внутри ячейки.

Расчет втекающих и вытекающих потоков в ячейке

Раздача потоков из ячейки в скошенной схеме

Движение двух капель жидкости вдоль линий сетки и под углом 45°

работающие двигатели торможения

Посадка возвращаемого аппарата

в условиях волнения

FSI-Взаимодействие жидкости и конструкции: непосредственное сопряжение и через CFD-поверхность

Непосредственно

- Поверхность конечных элементов и есть CFD поверхность
- Не используются дополнительные интерполяторы

CFD-поверхность

- Поверхность конечных элементов не совпадает с CFD поверхностью
- Используется интерполятор для аппроксимации данных с CFD на FE поверхность и обратно

- FlowVision и КЭ код периодически обмениваются расчетными данными после определенного временного шага TAU
- Информация прямо передается из одной программы в другую через сокетное соединение
- КЭ код и FlowVision могут быть установлены на разные платформы
- Вы можете подключить свое приложение через наш протокол MBC!!!

FlowVision используют компании Goodyear, Kenda, Giti, Pirelli и другие

Моделирование аквапланирования

Сердце с механическими клапанами

Другие задачи

Физическая модель обледенения

• Три фазы

- 1. воздух с каплями
- 2. лед
- 3. структура самолета
- Учет различия характерных времен процессов
 - Набегающий поток (дождь, снег) : секунды
 - Рост льда / течение пленки : минуты
- Сухой/влажный режим: определяется локальной термодинамической обстановкой
- Рост льда: **метод VOF**

Закон
сохранения
массы
$$\phi_c = 1 - \phi_d$$
, $\frac{\partial(\phi_c \rho_c)}{\partial t} + \nabla \cdot (\phi_c \rho_c V_c) = 0$
Учет вытеснения
каплями
Закон
сохранения
импульса
 $\frac{\partial(\phi_c \rho_c V_c)}{\partial t} + \nabla \cdot (\phi_c \rho_c V_c \otimes V_c) = -\phi_c \nabla p + \nabla \cdot (\phi_c \hat{\tau}) - Q_v \leftarrow Oficeимпульсомскаплями
Законсохраненияэнергии
 $\frac{\partial(\phi_c \rho_c h_c)}{\partial t} + \nabla \cdot (\phi_c \rho_c V_c h_c) = -\nabla \cdot (\phi_c J_q^{eff}) + \frac{d}{dt}(\phi_c p) + \phi_c(\hat{\tau}: \hat{S} + \rho_c) - Q_T$
 $\frac{\partial(\phi_c \rho_c h_c)}{\partial t} + \nabla \cdot (\phi_c \rho_c V_c h_c) = -\nabla \cdot (\phi_c J_q^{eff}) + \frac{d}{dt}(\phi_c p) + \phi_c(\hat{\tau}: \hat{S} + \rho_c) - Q_T$$

• Турбулентность Модели RANS – k-e, SA, SST + пристеночные функции

Фаза лед

*Messinger B.L. Equilibrium temperature of an unheated icing surface as a function of airspeed // J. of the Aeron. Sciences, 1953, vol. 20, No. 1, pp. 29-42

- Закон сохранения $\frac{\partial F}{\partial t} = \dot{m}_{ice}$ массы
- Закон
 сохранения
 энергии

$$\mathcal{O}_{I} \frac{\partial h_{I}}{\partial t} = \nabla \left(\frac{\lambda_{I}}{C_{p,I}} \nabla h_{I} \right)$$

Тепловой
 баланс на
 поверхности
 льда (*)

$$(h_d - h_f) \dot{m}_d + (\lambda_{gas} + \lambda_{gas,t}) \frac{T_{c,gas} - T_{f,0}}{y_{c,gas}} - \dot{m}_{evap(subl)} \Delta h_{evap}$$

$$= \lambda_{ice} \frac{T_{f,0} - T_{c,ice}}{y_{c,ice}} - \dot{m}_{ice} \Delta h_{fusion}$$

- $\dot{m}_{film} = \dot{m}_d \dot{m}_{ice} \dot{m}_{evap}$ Закон сохранения $\dot{m}_d =
 ho_d \mathbf{V}_d^n S_{base}$ - выпадение воды из воздуха массы \vec{V}_{f} Скорость
- движения пленки (**)

$$=\frac{h_f}{2\mu_f}\vec{\tau}_w + \frac{h_f^2}{3\nu_f}\left(\vec{g}^{\,\tau} - g^{\,n}\cdot\vec{\nabla}h_f + \beta\right)\frac{\sigma}{\rho_f h_f \Delta_{\perp}^{cl}}\cdot\vec{n}^{\,cl}$$

- eta коэффициент модели линии контакта
- Уравнение движения пленки

$$\frac{f^{n+1} - f^n}{\Delta \tau_f} + \sum_{sides} F_{side} = \frac{S_{base}}{\Omega_{cell} \rho_d} \dot{m}_{film}$$

*Bourgault Y., Beaugendre H., Habashi W.G. Development of a Shallow-Water Icing Model in FENSAP-ICE // Journal Of Aircraft, 2000, vol. 37, No. 4, pp.640-646 **Gosset A. Prediction of rivulet transition in anti-icing applications // 2017 DOI: 10.13009/EUCASS2017-482

Потоки по сторонам ячейки (UPWIND):

$$F_{side} = \begin{cases} \left(V_{f_L}^n \cdot h_{f_L} \cdot L_{side} \right) / \Omega_{cell}, & V_{f_L}^n > 0 \\ \left(V_{f_R}^n \cdot h_{f_R} \cdot L_{side} \right) / \Omega_{cell}, & V_{f_R}^n > 0 \end{cases}$$

Твердая поверхность либо

Взаимодействие фаз - Испарение пленки / сублимация льда

$$\begin{split} \dot{m}_{evap(subl)} &= St_{vap}\rho_{c} \left| V_{c} \right| \frac{\left(Y_{vap,w} - Y_{vap,c} \right)}{\left(1 - Y_{vap,w} \right)}, \quad \text{где} \\ St &= \left(\frac{C_{f}}{2} \right) \middle/ \left(Sc_{t} + \sqrt{\frac{C_{f}}{2}} \frac{Sc^{0.8}}{1,92} \left[\frac{u_{\tau} \cdot a_{h} \cdot h_{s}}{v_{gas,c}} \right]^{0.45} \right) \\ Y_{vap,w} &= \frac{\rho_{vap,w}}{\rho_{w}} = \frac{p_{vap,sat} \left(T_{w} \right)}{p} \frac{m_{vap}}{m_{w}} - \text{Maccobast доля пара} \\ \mathbf{Y4et шероховатости} (*): \quad \mu \to \mu_{eff} = \mu + a_{h} \cdot h_{s} \cdot \rho u_{\tau} h_{s} \end{split}$$

*Tran P., Brahimi M.T., Tezok F., Paraschivolu I. Numerical simulation of ice accretion on multiple element configurations // AIAA Meeting, 1996, AIAA Paper 96-0869 **Shin J., Bond T.H. Experimental and Computational Ice Shapes and Resulting Drag Increase for a NACA 0012 Airfoil // NASA Tech.

Mem. 105743, 1992

h_s - эквивалентная песочная шероховатость по эмпирической модели (**)

 a_h = F (y_{max}^+ , T_{total}, V^{∞}, MVD, LWC) - функция, подобранная эмпирически

* Алипченков В.М., Зайчик Л.И., Зейгарник Ю.А., Соловьев С.Л., Стоник О.Г. Развитие трехжидкостной модели двухфазного потока для дисперсно-кольцевого режима течения в каналах. Осаждение и унос капель // ТВТ, 2002, Т. 40, № 5, .с 772-778

- По радиусу $\frac{h_f}{R} > C$, $\dot{m}_{f_out} = \frac{(h_f RC) \cdot h_f}{\Delta \tau_f}$
 - *R* радиус кривизны поверхности
- Почислу $We_f > We_f^{cr}$, $We_f = \frac{\rho_g V_g^2 h_f}{\sigma_f}$ Вебера (*) $We_f^{cr} = \left[7 \cdot 10^{-6} + 4 \cdot 10^{-4} (Re_f - 160)^{-0.8}\right] Re_f$ $\dot{m}_{f_sh} = 0.23 \cdot \sqrt{\rho_f \rho_g V_g^2} \cdot (We_f - We_f^*)$
- Реализованы учет источников массы, импульса и энтальпии в уравнениях переноса дисперсной фазы

*Wright W.B., Rutkowski A. Validation Results for LEWICE 2.0 and CD-ROM, January 1999

Локальный коэффициент захвата в зависимости от дуговой координаты

ЛЕД, эксперимент *NASA Glenn Icing Research Tunnel

NACA0012, RUN 403, ~500 с: температура, ЛЕД

Скорость капель (раскрашена температурой) + температура льда

Форма льда

Метеоусловия:

- *T_{amm}* = 268.15 [K]
- *Р _{атм}* = 101 [кПа]
- Штиль V_∞=0 [м/с]

Осадки:

• **7.7 / 15.4 / 38.5** [мм/час]

Условия на поверхности:

- Поверхность с подводом тепла
- «Холодная» поверхность

Осадки 15.4 [мм/час] Осадки 38.5 [мм/час] ZX z×

FlowVision применяется для сертификационных расчетов обледенения самолетом SSJ, ШФДМС

Акустика шины с учетом деформации обтекаемой поверхности

FlowVision

Акустика пропеллера

FlowVision

Мгновенное распределение давления в следе

Figure 1: APC Slow Flyer 10x4.7 rotor (top and side view)

Мгновенное распределение функции гидродинамического источника в плоскости вращения

Согласование интегральных характеристик с опорными данными

65

Обработка результатов расчета акустики пропеллера

Пример создания пользовательской математической модели. Моделирование теплового факела в атмосфере на высотах до 10 км

Плотность воздуха – функция от высоты (задается в свойствах вещества):

$$\rho_0(Y) = \frac{P_0(Y)}{RT_0(Y)},$$

Уравнение Навье-Стокса модифицируется заданием дополнительной силы плавучести:

$$Fv = -\rho_0(Y) \frac{T'}{T_0(Y)} g,$$

Уравнение энергии решается для термодинамической энтальпии:

$$\frac{\partial \rho_0 \mathbf{h}'}{\partial t} + \nabla \rho_0 \mathbf{h}' V = \rho_0 V_y \left(C_p \frac{\partial T_0}{\partial y} \left(\frac{T'}{T_0} - 1 \right) - \mathbf{g} \right) + \nabla \left(\lambda_t \nabla (T' + T_0) \right)$$

Работа против сил тяжести учитывается дополнительным членом через интерфейс

Струя от двигателя в атмосфере. Небольшой ветер

Движемся к САПР

Автоматическое проектирование дульного тормоза

исходной

Моделирование сложной физики — газодинамика, магнитные и электрические поля, химические реакции

Плотность тока

Плотность тока j, $[A/m^2]$

Горение газа

- Зельдович
- Аррениус
- Магнуссен
- Аррениус Магнуссен
- EDC

Аррениус:

$$W_f = W_{kin} = A T^n_{abs} e^{-B/T abs} \rho^2 Y^{n-f}_f Y^{n-o}_o$$

Магнуссен:

$$W_f = W_{turb} = C \left(\frac{\mu\varepsilon}{\rho k^2}\right)^{0.25} \rho \frac{\varepsilon}{k} \min\left(Y_f, \frac{Y_o}{i_1}\right)$$

Аррениус - Магнуссен:

$$\frac{1}{W_f} = \frac{1 - \gamma}{W_{kin}} + \frac{\gamma}{W_{turb}}$$

Одна брутто-реакция:

$$f + i_1 o \rightarrow i_2 p$$

или

$$f + i_1 o \rightarrow i_2 p_1 + i_3 p_2$$

ельдович орениус Іагнуссен. ррениус-Магнуссен DC

 $\gamma^{0} = \left[2.13 \left(\frac{\nu \varepsilon}{k^{2}} \right)^{0.25} \right]^{2}$

EDC = Eddy Dissipation Concept:

Magnussen, B. F. (2005) "The Eddy Dissipation Concept. A bridge between science and technology" // Invited paper at ECCOMAS Thematic Conference on Computational Combustion, Lisbon, June 21-24, 2005, 25 p.

Модель предполагает, что химические реакции протекают в узких ламинарных зонах ("тонких структурах") между турбулентными вихрями. Концентрации горючего и окислителя в этих зонах, частично заполняющих расчётную ячейку, отличаются от своих средних (по объёму ячейки) значений. Они определяются из условия равенства скоростей турбулентной диффузии и ламинарного горения и, в свою очередь, определяют температуру и плотность "тонких структур" в ячейке.

$$\frac{\partial \left(\rho Y_{f}\right)}{\partial t} + \vec{\nabla} \cdot \left(\rho Y_{f} V\right) + \vec{\nabla} \cdot \boldsymbol{J}_{f,eff} = -W_{f}$$

$$W_{f} = \frac{\rho}{m_{f}} \frac{2.43 \left(\frac{\varepsilon}{\nu}\right)^{0.5}}{1 - \gamma^{0}} (Y_{f} - Y_{f}^{0}) = \frac{\rho}{\rho^{0}} W_{kin}(Y_{f}^{0}, Y_{o}^{0})$$

= массовая доля "тонких структур" в расчётной ячейке

FlowVision

Горение газа

Эксперимент: 23.07.2007 г. ТЭЦ ОАО «Мосэнерго». В трубку подается газ, струя поджигается и пламя стабилизируется на струе. Расстояние факела от торца трубки H=8...10d

Распределение температуры, ⁰С

Горение, в том числе угольных частиц

Общий вид горелки

- Определение полноты сгорания горючего
- Определение уровня вредных окислов
- Подавление резонансных явлений в камере
- Горючее дисперсный уголь

газа

Общий вид котла

частиц

доля пара

скорости угля

info@tesis.com.ru andrey@tesis.com.ru Мы любим моделировать Природу.

