Credit: Dr. A.Roll-Mecak

Гудимчук Кафедра биофизики Физический факультет МГУ

От молекул до клеток: компьютерное моделирование динамики микротрубочек на суперкомпьютере Ломоносов-2 Никита Борисович

Коллектив со-авторов работы

CryoET

J.Richard McIntosh

IcIntosh Eileen O'Toole

ole

Молекулярная динамика

Илья

Коваленко

Владимир Федоров

Екатерина Холина

Броуновская динамика

Евгений Ульянов Дмитрий Виноградов

ий Фазли дов Атауллаханов

Монте-Карло

Вероника Александрова

CellDynaMo

Валерий Барсегов

Динамическая нестабильность микротрубочек

В очищенной системе in vitro

Dr. Tim Mitchison

Dr. Torsten Wittmann

Многообразие структур, образуемых микротрубочками в клетках

Sanches et al 2017

Динамика микротрубочек позволяет захватывать и распределять хромосомы во время клеточного деления

Регуляция динамики микротрубочек в клеточном цикле

Cassimeris. Curr Opin Cell Biol 1999

1. Каковы механизмы динамического поведения микротрубочек в клетках и каковы принципы его регуляции?

2. Какова логика и механизмы взаимодействия микротрубочек и хромосом во время клеточного деления?

Наш подход: многомасштабное моделирование в сочетании с экспериментом Оптическая микроскопия

McIntosh et al JCB 2018

План доклада

Блок 1: динамика микротрубочек

Блок 2: микротрубочка как молекулярная машина

Блок 3: модель митотического деления клеток

Устоявшиеся представления о механизме динамики микротрубочек

Классическая модель «ГТФ-шапки» ΓДΦ ΓΤΦ тубулин тубулин Сборка Разборка 888 ΓДΦ ΓТΦ P идролиз катастрофа спасение

Al Bassam et al 2011

Устоявшиеся представления о механизме динамики микротрубочек

Постулаты

- 1) ГТФ-димеры тубулина «прямые», ГДФ-димеры тубулина «изогнутые»
- Форма концов микротрубочек при сборке и разборке существенно различаются кривизной протофиламентов.
- Катастрофа случайное событие потери ГТФ-шапки на конце собирающейся микротрубочки

Классическая модель «ГТФ-шапки»

Метод молекулярной динамики

- Пакет GROMACS
- Силовое поле CHARMM22*/CHARM36M (для белков) и CHARMM27 (для нуклеотидов)

$$U(\vec{R}) = \sum_{\text{bonds}} K_{b}(b - b_{0})^{2} + \sum_{\text{UB}} K_{\text{UB}}(S - S_{0})^{2} + \sum_{\text{angle}} K_{\theta}(\theta - \theta_{0})^{2} + \sum_{\text{dihedrals}} K_{\chi}(1 + \cos(n\chi - \delta)) + \sum_{\text{impropers}} K_{\text{imp}}(\varphi - \varphi_{0})^{2} + \sum_{\text{impropers}} K_{\text{imp}}(\varphi - \varphi_{0})^{2} + \sum_{\text{nonbond}} \epsilon \left[\left(\frac{R_{\min_{ij}}}{r_{ij}} \right)^{12} - \left(\frac{R_{\min_{ij}}}{r_{ij}} \right)^{6} \right] + \frac{q_{i}q_{j}}{\epsilon_{1}r_{ij}}$$

• Модель воды TIP3P

Полноатомные молекулярные модели тубулинов с явным учетом растворителя

Размер системы:

Тетрамер тубулина

Ящик 11.9x12.4x22.4 нм

Всего: 315 718 атомов, включая воду и ионы

Из них 27 628 атомов белка

Порядок расчетов:

- 1) Создание молекулярной системы (Modeller, Propka, Gromacs)
- 2) Минимизация энергии
- 3) Релаксация системы с фиксированными тяжелыми атомами (1 нс)
- 4) Релаксация системы с фикс Сα атомами (5 нс)
- 5) Продуктивные расчеты (1 мкс)

Тубулин, связанный с ГТФ принимает изогнутую конформацию в молекулярно-динамических расчетах

Средняя равновесная кривизна олигомеров ГТФ- и ГДФтубулина сопоставима (обе структуры существенно искривлены)

Коэффициент изгибной жесткости межтубулиновых интерфейсов

$$\kappa = k_B T / \sigma^2$$

Нуклеотид	Интерфейс	Изгибная жесткость, kT*rad ⁻²
ГДФ	внутридимерный	930 ± 120
ГТФ	внутридимерный	1100 ± 120
ГДФ	междимерный	1290 ± 510
ГТФ	междимерный	350 ± 110

Наиболее гибкий интерфейс

Модель конца микротрубочки

$$q_{k,n}^{i} = q_{k,n}^{i-1} - \frac{dt}{\gamma_{q}} \cdot \frac{\partial U_{total}}{\partial q_{k,n}^{i}} + \sqrt{2k_{B}T\frac{dt}{\gamma_{q}}} \cdot N(0,1)$$

Протофиламент спонтанно выпрямляться из-за тепловых флуктуаций с частотой порядка мегагерц

Жесткость протофиламента не лимитирует скорость сборки микротрубочки

Криоэлектронная томография концов микротрубочек при их сборке

S. pombe cells

S. cerevisiae cells

Протофиламенты на концах микротрубочек изогнуты как при разборке, так и при сборке

Сборка

Разборка

McIntosh et al., J Cell Biol 2018

Классическая модель «ГТФ-шапочки»

Модель «ГТФ-шапки» не описывает все аспекты «катастроф» и «спасений» микротрубочек

Стохастическая модель микротрубочки, растущей с изогнутыми концами

Построенная модель описывает многостадийный характер переходов микротрубочек от сборки к разборке

Gardner et al. Cell 2011

Разработанная модель сборки микротрубочек указывает на новые возможные механизмы регуляции работы микротрубочек белками и низкомолекулярными ингибиторами

Новые представления о сборке и разборке микротрубочки

Roll-Mecak (Dev. Cell 2020)

Блок 1: динамика микротрубочек

Блок 2: микротрубочка как молекулярная машина

Блок 3: модель митотического деления клеток

Взаимодействие концов микротрубочек и хромосом во время митоза

Данные из лаборатории Dr. Sophie Dumont

Эксперимент для измерения силы, развиваемой микротрубочками при деполимеризации

Grishchuk et al. Nature 2005

Измеряемая в центре ловушки сила зависит от размера микросферы

Grishchuk et al. PNAS 2008

В присутствии кольцевого Dam1 комплекса сила собирается со всех 13 протофиламентов микротрубочки

Grishchuk et al. PNAS 2008

Высокий активационный барьер позволяет развивать существенные силы при разборки микротрубочек

Gudimchuk et al., Nat Commun 2020

Разработанная модель дает механизм сопряжения концов собирающихся микротрубочки с кинетохором

Данные из лаборатории Dr. Sophie Dumont

Многомасштабная модель динамики микротрубочек

10 15 5 size of the model (tubulin monomers) number

of nodes

3

--- 7

<u></u> 8

Многомасштабная модель динамики микротрубочек

42

Блок 1: динамика микротрубочек

Блок 2: микротрубочка как молекулярная машина

Блок 3: модель митотического деления клеток

CellDynamo: Stochastic Reaction Diffusion-Dynamics Model

Валерий Барсегов

Фазли Атауллаханов

Kliuchnikov et al. (Plos Comp Biol 2022) **Reaction-Diffusion Master Equation**

$$\begin{aligned} \frac{dP(\boldsymbol{X},t)}{dt} &= \boldsymbol{R}P(\boldsymbol{X},t) + \boldsymbol{D}P(\boldsymbol{X},t) \\ &= \sum_{\nu}^{V} \sum_{\mu}^{M} [\alpha_{\mu}(\boldsymbol{x}_{\nu} - \boldsymbol{S}_{\mu})P(\boldsymbol{x}_{\nu} - \boldsymbol{S}_{\mu},t) - \alpha_{\mu}(\boldsymbol{x}_{\nu})P(\boldsymbol{x}_{\nu},t)] \\ &+ \sum_{\nu}^{V} \sum_{\xi}^{\pm i,j,k} \sum_{j}^{J} [d_{j}(\boldsymbol{x}_{j,\nu+\xi} + 1)P((\boldsymbol{x}+1)_{j,\nu+\xi} - 1_{j,\nu},t) - d_{j}\boldsymbol{x}_{j,\nu}P(\boldsymbol{x}_{j,\nu},t)] \end{aligned}$$

Langevin Equation

$$\frac{d\boldsymbol{r}_i}{dt} = \frac{1}{\gamma} \frac{\partial U(\boldsymbol{r})}{\partial \boldsymbol{r}_i} + \sigma \boldsymbol{g}_i(t)$$

~72 hours of wall-clock time to generate a few ~30 min trajectories of cell dynamics on a contemporary graphics card GeForce GTX 1080

S3 Movie:

Modeling flexible KT surface

Kliuchnikov et al. (Plos Comp Biol 2022)

Поиск и захват хромосом в митозе

(Plos Comp Biol 2022)

Выводы

- Многомасштабные модели позволяют объединить разнородные данные в единую картину для объяснения свойств микротрубочек – важнейших внутриклеточных биополимеров
- 2) Многомасштабные модели позволяют выявить противоречия в существующих данных и «подсветить» области для экспериментального исследования
- 3) Моделирование работы цитоскелета на уровне целой клетки представляет уникальные возможности для исследования физиологически важных вопросов

Спасибо!

CryoET

J.Richard McIntosh

Eileen O'Toole

Молекулярная динамика

Илья

Коваленко

Владимир Федоров

Екатерина Холина

Броуновская динамика

Дмитрий Евгений Ульянов Виноградов

Фазли

Атауллаханов

Монте-Карло

Вероника Александрова

Валерий Барсегов

